Lecture 7. Autonomous Equations

Example Consider the following differential equation

$$
\frac{dx}{dt} = 4x(7-x)
$$

Solving this differential equation, we get the following solutions:

- General solutions $x(t) = \frac{7}{1 + Ce^{-28t}}$
- Singular solutions $x(t) \equiv 0$ and $x(t) \equiv 7$.

We sketch the some solution curves for the equation:

In this section, we will discuss the solutions $x(t) \equiv 0$ and $x(t) \equiv 7$ and their stability.

Critical points and equilibrium solutions

Let's consider the differential equation of the form

$$
\frac{dx}{dt} = f(x) \tag{1}
$$

- \bullet We call it an **autonomous** first order equation--one in which the independent variable t does not appear explicitly.
- The solutions of the equation $f(x) = 0$ play an important role and are called **critical points** of the autonomous differential equation $\frac{dx}{dt} = f(x)$.
- If $x = c$ is a critical point of Eq. (1), then the differential equation has the constant solution $x(t) \equiv c$.
- A constant solution of a differentail equation is sometimes called an **equilibrium solution**.

Stability of Critial Points

Consider the differential equation of the form

$$
\frac{dx}{dt} = f(x) \tag{3}
$$

- **Stable:** In general, a critical point $x = c$ of an autonomous first-order equation is said to be **stable** if the initial value x_0 is sufficiently close to c, then $x(t)$ remains close to c for all $t > 0$.
- **Unstable:** The critical point $x = c$ is **unstable** if it is not stable. \bullet

acts like a sport

<u>Semi-stable:</u> The critical point $x = c$ looks stable on one side but unstabe on the other side. See Example 1 below. ⑪

Funnels and Spouts

For example, consider
$$
\frac{dx}{dt} = 4x - x^2
$$
. The vector field is as below. $\int (x) = 4x-x^2 = x(4-x)$
\nUsing the vector field, we can graph the solution curves:
\n $x=4$ **Example**
\n $x=4$ **stable**
\n $x=4$ **stable**
\n $x=4$ **stable**
\n $x=0$ **angle**
\n $x=0$

Slope field generator:

https://www.geogebra.org/m/Pd4Hn4BR

This applet will generate Direction Fields and approximate solution curves given initial values. Click and drag the initial point A to see its corresponding solution curve Credits: Originally created by Chip Rollinson

Phase diagram

We can summarize the behavior of the solution by the phase diagram, which indicates the direction (phase) of change of x as a function of x itself.

Example 1. Calculate the critical points of the following equation and draw the phase diagram. Classify the stability of the critical points.

$$
x'(t)=\frac{dx}{dt}=4x-x^2
$$

Ans: Let $f(x) = 4x-x^2 = x (4-x) = 0$ \Rightarrow $x = 0$ and $x = 4$ are critical points. We construct the phase diagram as the following : First we draw the x-axis with the critical points

 \rightarrow \leftarrow stable critical points): $x=4$ \rightarrow Unstable critical point: $x=0$ \rightarrow \rightarrow \leftrightarrow \leftarrow

Example 2.

Consider the initial value problem, $y' = -y(y-1)^2(y-2)$, $y(0) = y_0$.

(1) Calculate the critical points of this equation and draw the phase diagram. Classify the stability of the critical points. =

(2) For which initial value y_0 below is $\lim_{t\to\infty} y(t) = 1$?

Your answer:**__**__. B

- $A. -0.001$
- **B.**
- **C.**
- **D.**
- **E.** None of the above

Exericse 3. Calculate the critical points of the equation below and draw the phase diagram. Classify the stability of the critical points.

Exericise 4. Find an autonomous differential equation with all of the following properties: equilibrium solutions at and , ① for $0 < y < 7$, and \bigoplus for $-\infty < y < 0$ and $7 < y < \infty$. (3) = $f^{(\times)}$ ANS: Let $f(x) = -4x(1-x)(2-x) = 0$, we have $x = 0$, $x=1$, $x = 2$ Thus the critical points are $0, 1, 2$. Phase diagram: $\rightarrow \bullet \longleftrightarrow \bullet \Longleftrightarrow \times$ 0 ^l 2 When $x < 0$, $x' = -4x (|-x)(2-x) > 0$. When $|, x$ γ = - 4x (l-x)(2-x) > 0 w when $0 < x < 1$, $x' = -4x$ ($-x$) ($x > 0$. When $x > 0$, $x' = -4x$ ($-x$) ($x > 0$ From the phase diagram, we know we have stable oritical point O, 2 , unstable critical point I . ANS: Φ implies $y = 0.7$ are critical points to $f(x)$. By ^② and ^③ , we know $y' = y (7-y)$ is an autonomus diff. eg

egn satisfies 0-

③ .

Exercise 5. Let $y(t)$ be a solution of $y' = \frac{1}{4}y(1 - \frac{y}{4})$ such that $y(0) = 8$. Determine $\lim_{t\to\infty} y(t)$ without finding $y(t)$ explicitly.

